Counterfactual-based mediation analysis Workshop 2

Rhian Daniel
London School of Hygiene and Tropical Medicine

CIMPOD
28th February, 2017

Outline

(1) Setting the scene

Quick summary of yesterday
Today's case study
Mediation analysis with multiple mediators
Sequential mediation analysis
Interventional effects for multiple mediators
(2) Case study
(3) Q\&A
(4) References

Outline

(1) Setting the scene

Quick summary of yesterday
Today's case study
Mediation analysis with multiple mediators Sequential mediation analysis Interventional effects for multiple mediators
(2) Case study
(3) Q\&A
(4) References

Outline

(1) Setting the scene

Quick summary of yesterday
Today's case study
Mediation analysis with multiple mediators Sequential mediation analysis Interventional effects for multiple mediators
(2) Case study
(3) $Q \& A$
(4) References

- Questions concerning mediation are often posed and tie in with our intuition on what it means to 'understand mechanism'.
- Questions concerning mediation are often posed and tie in with our intuition on what it means to 'understand mechanism'.
- Traditional mediation methods ('product' or 'difference') suffer from the same vagueness that has plagued all informal statistical methods for causal inference. What exactly is being estimated? Under what assumptions is our estimation method successful?
- Questions concerning mediation are often posed and tie in with our intuition on what it means to 'understand mechanism'.
- Traditional mediation methods ('product' or 'difference') suffer from the same vagueness that has plagued all informal statistical methods for causal inference. What exactly is being estimated? Under what assumptions is our estimation method successful?
- Traditional mediation methods are also limited to simple linear models.
- Questions concerning mediation are often posed and tie in with our intuition on what it means to 'understand mechanism'.
- Traditional mediation methods ('product' or 'difference') suffer from the same vagueness that has plagued all informal statistical methods for causal inference. What exactly is being estimated? Under what assumptions is our estimation method successful?
- Traditional mediation methods are also limited to simple linear models.
- The causal inference literature, using counterfactuals, has clarified what we might mean by 'direct' and 'indirect' effects, but there isn't just one possibility.
- Questions concerning mediation are often posed and tie in with our intuition on what it means to 'understand mechanism'.
- Traditional mediation methods ('product' or 'difference') suffer from the same vagueness that has plagued all informal statistical methods for causal inference. What exactly is being estimated? Under what assumptions is our estimation method successful?
- Traditional mediation methods are also limited to simple linear models.
- The causal inference literature, using counterfactuals, has clarified what we might mean by 'direct' and 'indirect' effects, but there isn't just one possibility.
- It has led to clear assumptions under which these can be identified, and a myriad methods for estimation, reaching far beyond two simple linear models.
- Yesterday we focussed on the fully-parametric approach, both analytic and using MC simulation.
- Yesterday we focussed on the fully-parametric approach, both analytic and using MC simulation.
- We focussed only on the setting with a continuous outcome and mediator, and with a single mediator of interest.
- Yesterday we focussed on the fully-parametric approach, both analytic and using MC simulation.
- We focussed only on the setting with a continuous outcome and mediator, and with a single mediator of interest.
- In today's workshop, we turn to mediation analysis with multiple mediators, and we'll look at a setting with a binary outcome/mediators.

Outline

(1) Setting the scene

Quick summary of yesterday
Today's case study
Mediation analysis with multiple mediators Sequential mediation analysis Interventional effects for multiple mediators
(2) Case study
(3) Q\&A
(4) References

NYCRIS data: SE disparities in Br Ca survival

- Northern and Yorkshire Cancer Registry Information Service (NYCRIS), a population-based cancer registry covering 12% of the English population

NYCRIS data: SE disparities in Br Ca survival

- Northern and Yorkshire Cancer Registry Information Service (NYCRIS), a population-based cancer registry covering 12\% of the English population
- Survival to 1 year: 95.9% in higher SES women vs. 93.2% in lower SES women

NYCRIS data: SE disparities in Br Ca survival

- Northern and Yorkshire Cancer Registry Information Service (NYCRIS), a population-based cancer registry covering 12\% of the English population
- Survival to 1 year: 95.9% in higher SES women vs. 93.2% in lower SES women
- Survival to 5 years: 64.7% vs. 54.1%
- Northern and Yorkshire Cancer Registry Information Service (NYCRIS), a population-based cancer registry covering 12\% of the English population
- Survival to 1 year: 95.9% in higher SES women vs. 93.2% in lower SES women
- Survival to 5 years: 64.7% vs. 54.1%
- Question: what explains this? Screening? Treatment?

Causal diagram

- We want to separate the effect of SES on survival into an effect via screening and an effect via treatment, and an effect via neither.

Causal diagram

- We want to separate the effect of SES on survival into an effect via screening and an effect via treatment, and an effect via neither.
- This is complicated by the fact that M_{1} can affect M_{2}.

- We want to separate the effect of SES on survival into an effect via screening and an effect via treatment, and an effect via neither.
- This is complicated by the fact that M_{1} can affect M_{2}.
- In fact, we don't have data on screening, but we'll use age and stage at diagnosis as a proxy for screening.
- So our \mathbf{M}_{1} is in fact a vector.

Causal diagram

- We want to separate the effect of SES on survival into an effect via screening and an effect via treatment, and an effect via neither.
- This is complicated by the fact that M_{1} can affect M_{2}.
- In fact, we don't have data on screening, but we'll use age and stage at diagnosis as a proxy for screening.
- So our \mathbf{M}_{1} is in fact a vector.

Outline

(1) Setting the scene

Quick summary of yesterday Today's case study

> Mediation analysis with multiple mediators Sequential mediation analysis Interventional effects for multiple mediators
(2) Case study
(3) Q\&A
(4) References

Counterfactuals and estimands for multiple mediators

— With one mediator, we needed:

$$
M(x), Y(x, m), Y\left(x, M\left(x^{\prime}\right)\right)
$$

Counterfactuals and estimands for multiple mediators

- With one mediator, we needed:

$$
M(x), Y(x, m), Y\left(x, M\left(x^{\prime}\right)\right)
$$

- With two, we need:

$$
M_{1}(x), M_{2}\left(x, m_{1}\right), Y\left(x, m_{1}, m_{2}\right)
$$

Counterfactuals and estimands for multiple mediators

- With one mediator, we needed:

$$
M(x), Y(x, m), Y\left(x, M\left(x^{\prime}\right)\right)
$$

— With two, we need:

$$
M_{1}(x), M_{2}\left(x, m_{1}\right), Y\left(x, m_{1}, m_{2}\right)
$$

and

$$
M_{2}\left(x, M_{1}\left(x^{\prime}\right)\right)
$$

Counterfactuals and estimands for multiple mediators

- With one mediator, we needed:

$$
M(x), Y(x, m), Y\left(x, M\left(x^{\prime}\right)\right)
$$

— With two, we need:

$$
M_{1}(x), M_{2}\left(x, m_{1}\right), Y\left(x, m_{1}, m_{2}\right)
$$

and

$$
M_{2}\left(x, M_{1}\left(x^{\prime}\right)\right)
$$

and

$$
Y\left(x, M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime \prime}, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)
$$

Counterfactuals and estimands for multiple mediators

- With one mediator, we needed:

$$
M(x), Y(x, m), Y\left(x, M\left(x^{\prime}\right)\right)
$$

— With two, we need:

$$
M_{1}(x), M_{2}\left(x, m_{1}\right), Y\left(x, m_{1}, m_{2}\right)
$$

and

$$
M_{2}\left(x, M_{1}\left(x^{\prime}\right)\right)
$$

and

$$
Y\left(x, M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime \prime}, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)
$$

- Natural path-specific effects are defined as contrasts between these for carefully chosen values of $x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}$.

Counterfactuals and estimands for multiple mediators

- With one mediator, we needed:

$$
M(x), Y(x, m), Y\left(x, M\left(x^{\prime}\right)\right)
$$

— With two, we need:

$$
M_{1}(x), M_{2}\left(x, m_{1}\right), Y\left(x, m_{1}, m_{2}\right)
$$

and

$$
M_{2}\left(x, M_{1}\left(x^{\prime}\right)\right)
$$

and

$$
Y\left(x, M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime \prime}, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)
$$

- Natural path-specific effects are defined as contrasts between these for carefully chosen values of $x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}$.

Counterfactuals and estimands for multiple mediators

- With one mediator, we needed:

$$
M(x), Y(x, m), Y\left(x, M\left(x^{\prime}\right)\right)
$$

— With two, we need:

$$
M_{1}(x), M_{2}\left(x, m_{1}\right), Y\left(x, m_{1}, m_{2}\right)
$$

and

$$
M_{2}\left(x, M_{1}\left(x^{\prime}\right)\right)
$$

and

$$
Y\left(x, M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime \prime}, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)
$$

- Natural path-specific effects are defined as contrasts between these for carefully chosen values of $x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}$.

Direct effect

- A natural direct effect (through neither M_{1} nor M_{2}) is of the form:

Direct effect

— A natural direct effect (through neither M_{1} nor M_{2}) is of the form:

$$
E\left\{Y\left(1, M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime \prime}, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)-Y\left(0, M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime \prime}, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)\right\}
$$

Direct effect

— A natural direct effect (through neither M_{1} nor M_{2}) is of the form:

$$
E\left\{Y\left(1, M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime \prime}, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)-Y\left(0, M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime \prime}, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)\right\}
$$

- The first argument changes and all other arguments stay the same, making it a direct effect.

Direct effect

— A natural direct effect (through neither M_{1} nor M_{2}) is of the form:

$$
E\left\{Y\left(1, M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime \prime}, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)-Y\left(0, M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime \prime}, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)\right\}
$$

- The first argument changes and all other arguments stay the same, making it a direct effect.
— A natural direct effect (through neither M_{1} nor M_{2}) is of the form:

$$
E\left\{Y\left(1, M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime \prime}, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)-Y\left(0, M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime \prime}, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)\right\}
$$

- The first argument changes and all other arguments stay the same, making it a direct effect.
- There are 8 choices for how to fix $x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}$.
— A natural direct effect (through neither M_{1} nor M_{2}) is of the form:

$$
E\left\{Y\left(1, M_{1}(0), M_{2}\left(0, M_{1}(0)\right)\right)-Y\left(0, M_{1}(0), M_{2}\left(0, M_{1}(0)\right)\right)\right\}
$$

- The first argument changes and all other arguments stay the same, making it a direct effect.
— There are 8 choices for how to fix $x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}$.
- We can choose $\left(x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this NDE-000.

Direct effect

— A natural direct effect (through neither M_{1} nor M_{2}) is of the form:

$$
E\left\{Y\left(1, M_{1}(0), M_{2}\left(0, M_{1}(1)\right)\right)-Y\left(0, M_{1}(0), M_{2}\left(0, M_{1}(1)\right)\right)\right\}
$$

- The first argument changes and all other arguments stay the same, making it a direct effect.
- There are 8 choices for how to fix $x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}$.
- We can choose $\left(x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this NDE-000.
- Similarly, can choose $\left(x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,0,1)$. We call this NDE-001.

Direct effect

— A natural direct effect (through neither M_{1} nor M_{2}) is of the form:

$$
E\left\{Y\left(1, M_{1}(0), M_{2}\left(1, M_{1}(0)\right)\right)-Y\left(0, M_{1}(0), M_{2}\left(1, M_{1}(0)\right)\right)\right\}
$$

- The first argument changes and all other arguments stay the same, making it a direct effect.
- There are 8 choices for how to fix $x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}$.
— We can choose $\left(x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this NDE-000.
— Similarly, can choose $\left(x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,1,0)$. We call this NDE-010.

Direct effect

— A natural direct effect (through neither M_{1} nor M_{2}) is of the form:

$$
E\left\{Y\left(1, M_{1}(0), M_{2}\left(1, M_{1}(1)\right)\right)-Y\left(0, M_{1}(0), M_{2}\left(1, M_{1}(1)\right)\right)\right\}
$$

- The first argument changes and all other arguments stay the same, making it a direct effect.
- There are 8 choices for how to fix $x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}$.
— We can choose $\left(x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this NDE-000.
— Similarly, can choose $\left(x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,1,1)$. We call this NDE-011.
— A natural direct effect (through neither M_{1} nor M_{2}) is of the form:

$$
E\left\{Y\left(1, M_{1}(1), M_{2}\left(0, M_{1}(0)\right)\right)-Y\left(0, M_{1}(1), M_{2}\left(0, M_{1}(0)\right)\right)\right\}
$$

- The first argument changes and all other arguments stay the same, making it a direct effect.
- There are 8 choices for how to fix $x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}$.
— We can choose $\left(x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this NDE-000.
- Similarly, can choose $\left(x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(1,0,0)$. We call this NDE-100.

Direct effect

— A natural direct effect (through neither M_{1} nor M_{2}) is of the form:

$$
E\left\{Y\left(1, M_{1}(1), M_{2}\left(0, M_{1}(1)\right)\right)-Y\left(0, M_{1}(1), M_{2}\left(0, M_{1}(1)\right)\right)\right\}
$$

- The first argument changes and all other arguments stay the same, making it a direct effect.
- There are 8 choices for how to fix $x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}$.
— We can choose $\left(x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this NDE-000.
- Similarly, can choose $\left(x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(1,0,1)$. We call this NDE-101.

Direct effect

— A natural direct effect (through neither M_{1} nor M_{2}) is of the form:

$$
E\left\{Y\left(1, M_{1}(1), M_{2}\left(1, M_{1}(0)\right)\right)-Y\left(0, M_{1}(1), M_{2}\left(1, M_{1}(0)\right)\right)\right\}
$$

- The first argument changes and all other arguments stay the same, making it a direct effect.
- There are 8 choices for how to fix $x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}$.
— We can choose $\left(x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this NDE-000.
- Similarly, can choose $\left(x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(1,1,0)$. We call this NDE-110.

Direct effect

— A natural direct effect (through neither M_{1} nor M_{2}) is of the form:

$$
E\left\{Y\left(1, M_{1}(1), M_{2}\left(1, M_{1}(1)\right)\right)-Y\left(0, M_{1}(1), M_{2}\left(1, M_{1}(1)\right)\right)\right\}
$$

- The first argument changes and all other arguments stay the same, making it a direct effect.
- There are 8 choices for how to fix $x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}$.
— We can choose $\left(x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this NDE-000.
— Similarly, can choose $\left(x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(1,1,1)$. We call this NDE-111.

Indirect effect through M_{1} only

- A natural indirect effect through M_{1} only is of the form:

Indirect effect through M_{1} only

- A natural indirect effect through M_{1} only is of the form:

$$
E\left\{Y\left(x, M_{1}(1), M_{2}\left(x^{\prime \prime}, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)-Y\left(x, M_{1}(0), M_{2}\left(x^{\prime \prime}, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)\right\}
$$

Indirect effect through M_{1} only

- A natural indirect effect through M_{1} only is of the form:

$$
E\left\{Y\left(x, M_{1}(1), M_{2}\left(x^{\prime \prime}, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)-Y\left(x, M_{1}(0), M_{2}\left(x^{\prime \prime}, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)\right\}
$$

- The second argument changes and all other arguments stay the same, making it an indirect effect through M_{1} only.

Indirect effect through M_{1} only

- A natural indirect effect through M_{1} only is of the form:

$$
E\left\{Y\left(x, M_{1}(1), M_{2}\left(x^{\prime \prime}, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)-Y\left(x, M_{1}(0), M_{2}\left(x^{\prime \prime}, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)\right\}
$$

- The second argument changes and all other arguments stay the same, making it an indirect effect through M_{1} only.

Indirect effect through M_{1} only

- A natural indirect effect through M_{1} only is of the form:

$$
E\left\{Y\left(x, M_{1}(1), M_{2}\left(x^{\prime \prime}, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)-Y\left(x, M_{1}(0), M_{2}\left(x^{\prime \prime}, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)\right\}
$$

- The second argument changes and all other arguments stay the same, making it an indirect effect through M_{1} only.
- There are 8 choices for how to fix $x, x^{\prime \prime}, x^{\prime \prime \prime}$.

Indirect effect through M_{1} only

- A natural indirect effect through M_{1} only is of the form:

$$
E\left\{Y\left(0, M_{1}(1), M_{2}\left(0, M_{1}(0)\right)\right)-Y\left(0, M_{1}(0), M_{2}\left(0, M_{1}(0)\right)\right)\right\}
$$

- The second argument changes and all other arguments stay the same, making it an indirect effect through M_{1} only.
- There are 8 choices for how to fix $x, x^{\prime \prime}, x^{\prime \prime \prime}$.
— We can choose $\left(x, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{1}-000$.

Indirect effect through M_{1} only

- A natural indirect effect through M_{1} only is of the form:

$$
E\left\{Y\left(0, M_{1}(1), M_{2}\left(0, M_{1}(1)\right)\right)-Y\left(0, M_{1}(0), M_{2}\left(0, M_{1}(1)\right)\right)\right\}
$$

- The second argument changes and all other arguments stay the same, making it an indirect effect through M_{1} only.
- There are 8 choices for how to fix $x, x^{\prime \prime}, x^{\prime \prime \prime}$.
- We can choose $\left(x, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{1}-000$.
- Similarly, can choose $\left(x, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,0,1)$. We call this $\mathrm{NIE}_{1}-001$.

Indirect effect through M_{1} only

- A natural indirect effect through M_{1} only is of the form:

$$
E\left\{Y\left(0, M_{1}(1), M_{2}\left(1, M_{1}(0)\right)\right)-Y\left(0, M_{1}(0), M_{2}\left(1, M_{1}(0)\right)\right)\right\}
$$

- The second argument changes and all other arguments stay the same, making it an indirect effect through M_{1} only.
- There are 8 choices for how to fix $x, x^{\prime \prime}, x^{\prime \prime \prime}$.
- We can choose $\left(x, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{1}-000$.
- Similarly, can choose $\left(x, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,1,0)$. We call this $\mathrm{NIE}_{1}-010$.

Indirect effect through M_{1} only

- A natural indirect effect through M_{1} only is of the form:

$$
E\left\{Y\left(0, M_{1}(1), M_{2}\left(1, M_{1}(1)\right)\right)-Y\left(0, M_{1}(0), M_{2}\left(1, M_{1}(1)\right)\right)\right\}
$$

- The second argument changes and all other arguments stay the same, making it an indirect effect through M_{1} only.
- There are 8 choices for how to fix $x, x^{\prime \prime}, x^{\prime \prime \prime}$.
- We can choose $\left(x, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{1}-000$.
— Similarly, can choose $\left(x, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,1,1)$. We call this $\mathrm{NIE}_{1}-011$.

Indirect effect through M_{1} only

- A natural indirect effect through M_{1} only is of the form:

$$
E\left\{Y\left(1, M_{1}(1), M_{2}\left(0, M_{1}(0)\right)\right)-Y\left(1, M_{1}(0), M_{2}\left(0, M_{1}(0)\right)\right)\right\}
$$

- The second argument changes and all other arguments stay the same, making it an indirect effect through M_{1} only.
- There are 8 choices for how to fix $x, x^{\prime \prime}, x^{\prime \prime \prime}$.
- We can choose $\left(x, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{1}-000$.
- Similarly, can choose $\left(x, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(1,0,0)$. We call this $\mathrm{NIE}_{1}-100$.

Indirect effect through M_{1} only

- A natural indirect effect through M_{1} only is of the form:

$$
E\left\{Y\left(1, M_{1}(1), M_{2}\left(0, M_{1}(1)\right)\right)-Y\left(1, M_{1}(0), M_{2}\left(0, M_{1}(1)\right)\right)\right\}
$$

- The second argument changes and all other arguments stay the same, making it an indirect effect through M_{1} only.
- There are 8 choices for how to fix $x, x^{\prime \prime}, x^{\prime \prime \prime}$.
- We can choose $\left(x, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{1}-000$.
- Similarly, can choose $\left(x, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(1,0,1)$. We call this $\mathrm{NIE}_{1}-101$.

Indirect effect through M_{1} only

- A natural indirect effect through M_{1} only is of the form:

$$
E\left\{Y\left(1, M_{1}(1), M_{2}\left(1, M_{1}(0)\right)\right)-Y\left(1, M_{1}(0), M_{2}\left(1, M_{1}(0)\right)\right)\right\}
$$

- The second argument changes and all other arguments stay the same, making it an indirect effect through M_{1} only.
- There are 8 choices for how to fix $x, x^{\prime \prime}, x^{\prime \prime \prime}$.
- We can choose $\left(x, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{1}-000$.
- Similarly, can choose $\left(x, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(1,1,0)$. We call this $\mathrm{NIE}_{1}-110$.

Indirect effect through M_{1} only

- A natural indirect effect through M_{1} only is of the form:

$$
E\left\{Y\left(1, M_{1}(1), M_{2}\left(1, M_{1}(1)\right)\right)-Y\left(1, M_{1}(0), M_{2}\left(1, M_{1}(1)\right)\right)\right\}
$$

- The second argument changes and all other arguments stay the same, making it an indirect effect through M_{1} only.
- There are 8 choices for how to fix $x, x^{\prime \prime}, x^{\prime \prime \prime}$.
- We can choose $\left(x, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{1}-000$.
— Similarly, can choose $\left(x, x^{\prime \prime}, x^{\prime \prime \prime}\right)=(1,1,1)$. We call this $\mathrm{NIE}_{1}-111$.

Indirect effect through M_{2} only

- A natural indirect effect through M_{2} only is of the form:

Indirect effect through M_{2} only

- A natural indirect effect through M_{2} only is of the form:

$$
E\left\{Y\left(x, M_{1}\left(x^{\prime}\right), M_{2}\left(1, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)-Y\left(x, M_{1}\left(x^{\prime}\right), M_{2}\left(0, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)\right\}
$$

Indirect effect through M_{2} only

- A natural indirect effect through M_{2} only is of the form:

$$
E\left\{Y\left(x, M_{1}\left(x^{\prime}\right), M_{2}\left(1, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)-Y\left(x, M_{1}\left(x^{\prime}\right), M_{2}\left(0, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)\right\}
$$

— The third argument changes and all other arguments stay the same, making it an indirect effect through M_{2} only.

Indirect effect through M_{2} only

- A natural indirect effect through M_{2} only is of the form:

$$
E\left\{Y\left(x, M_{1}\left(x^{\prime}\right), M_{2}\left(1, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)-Y\left(x, M_{1}\left(x^{\prime}\right), M_{2}\left(0, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)\right\}
$$

— The third argument changes and all other arguments stay the same, making it an indirect effect through M_{2} only.

Indirect effect through M_{2} only

- A natural indirect effect through M_{2} only is of the form:

$$
E\left\{Y\left(x, M_{1}\left(x^{\prime}\right), M_{2}\left(1, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)-Y\left(x, M_{1}\left(x^{\prime}\right), M_{2}\left(0, M_{1}\left(x^{\prime \prime \prime}\right)\right)\right)\right\}
$$

— The third argument changes and all other arguments stay the same, making it an indirect effect through M_{2} only. - There are 8 choices for how to fix $x, x^{\prime}, x^{\prime \prime \prime}$.

Indirect effect through M_{2} only

- A natural indirect effect through M_{2} only is of the form:

$$
E\left\{Y\left(0, M_{1}(0), M_{2}\left(1, M_{1}(0)\right)\right)-Y\left(0, M_{1}(0), M_{2}\left(0, M_{1}(0)\right)\right)\right\}
$$

— The third argument changes and all other arguments stay the same, making it an indirect effect through M_{2} only.

- There are 8 choices for how to fix $x, x^{\prime}, x^{\prime \prime \prime}$.
- We can choose $\left(x, x^{\prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{2}-000$.

Indirect effect through M_{2} only

- A natural indirect effect through M_{2} only is of the form:

$$
E\left\{Y\left(0, M_{1}(0), M_{2}\left(1, M_{1}(1)\right)\right)-Y\left(0, M_{1}(0), M_{2}\left(0, M_{1}(1)\right)\right)\right\}
$$

— The third argument changes and all other arguments stay the same, making it an indirect effect through M_{2} only.

- There are 8 choices for how to fix $x, x^{\prime}, x^{\prime \prime \prime}$.
- We can choose $\left(x, x^{\prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{2}-000$.
- Similarly, can choose $\left(x, x^{\prime}, x^{\prime \prime \prime}\right)=(0,0,1)$. We call this $\mathrm{NIE}_{2}-001$.

Indirect effect through M_{2} only

- A natural indirect effect through M_{2} only is of the form:

$$
E\left\{Y\left(0, M_{1}(1), M_{2}\left(1, M_{1}(0)\right)\right)-Y\left(0, M_{1}(1), M_{2}\left(0, M_{1}(0)\right)\right)\right\}
$$

— The third argument changes and all other arguments stay the same, making it an indirect effect through M_{2} only.

- There are 8 choices for how to fix $x, x^{\prime}, x^{\prime \prime \prime}$.
- We can choose $\left(x, x^{\prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{2}-000$.
- Similarly, can choose $\left(x, x^{\prime}, x^{\prime \prime \prime}\right)=(0,1,0)$. We call this $\mathrm{NIE}_{2}-010$.

Indirect effect through M_{2} only

- A natural indirect effect through M_{2} only is of the form:

$$
E\left\{Y\left(0, M_{1}(1), M_{2}\left(1, M_{1}(1)\right)\right)-Y\left(0, M_{1}(1), M_{2}\left(0, M_{1}(1)\right)\right)\right\}
$$

— The third argument changes and all other arguments stay the same, making it an indirect effect through M_{2} only.

- There are 8 choices for how to fix $x, x^{\prime}, x^{\prime \prime \prime}$.
- We can choose $\left(x, x^{\prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{2}-000$.
- Similarly, can choose $\left(x, x^{\prime}, x^{\prime \prime \prime}\right)=(0,1,1)$. We call this $\mathrm{NIE}_{2}-011$.

Indirect effect through M_{2} only

- A natural indirect effect through M_{2} only is of the form:

$$
E\left\{Y\left(1, M_{1}(0), M_{2}\left(1, M_{1}(0)\right)\right)-Y\left(1, M_{1}(0), M_{2}\left(0, M_{1}(0)\right)\right)\right\}
$$

— The third argument changes and all other arguments stay the same, making it an indirect effect through M_{2} only.

- There are 8 choices for how to fix $x, x^{\prime}, x^{\prime \prime \prime}$.
- We can choose $\left(x, x^{\prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{2}-000$.
- Similarly, can choose $\left(x, x^{\prime}, x^{\prime \prime \prime}\right)=(1,0,0)$. We call this $\mathrm{NIE}_{2}-100$.

Indirect effect through M_{2} only

- A natural indirect effect through M_{2} only is of the form:

$$
E\left\{Y\left(1, M_{1}(0), M_{2}\left(1, M_{1}(1)\right)\right)-Y\left(1, M_{1}(0), M_{2}\left(0, M_{1}(1)\right)\right)\right\}
$$

— The third argument changes and all other arguments stay the same, making it an indirect effect through M_{2} only.

- There are 8 choices for how to fix $x, x^{\prime}, x^{\prime \prime \prime}$.
- We can choose $\left(x, x^{\prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{2}-000$.
- Similarly, can choose $\left(x, x^{\prime}, x^{\prime \prime \prime}\right)=(1,0,1)$. We call this $\mathrm{NIE}_{2}-101$.

Indirect effect through M_{2} only

- A natural indirect effect through M_{2} only is of the form:

$$
E\left\{Y\left(1, M_{1}(1), M_{2}\left(1, M_{1}(0)\right)\right)-Y\left(1, M_{1}(1), M_{2}\left(0, M_{1}(0)\right)\right)\right\}
$$

— The third argument changes and all other arguments stay the same, making it an indirect effect through M_{2} only.

- There are 8 choices for how to fix $x, x^{\prime}, x^{\prime \prime \prime}$.
- We can choose $\left(x, x^{\prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{2}-000$.
- Similarly, can choose $\left(x, x^{\prime}, x^{\prime \prime \prime}\right)=(1,1,0)$. We call this $\mathrm{NIE}_{2}-110$.

Indirect effect through M_{2} only

- A natural indirect effect through M_{2} only is of the form:

$$
E\left\{Y\left(1, M_{1}(1), M_{2}\left(1, M_{1}(1)\right)\right)-Y\left(1, M_{1}(1), M_{2}\left(0, M_{1}(1)\right)\right)\right\}
$$

— The third argument changes and all other arguments stay the same, making it an indirect effect through M_{2} only.

- There are 8 choices for how to fix $x, x^{\prime}, x^{\prime \prime \prime}$.
- We can choose $\left(x, x^{\prime}, x^{\prime \prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{2}-000$.
- Similarly, can choose $\left(x, x^{\prime}, x^{\prime \prime \prime}\right)=(1,1,1)$. We call this $\mathrm{NIE}_{2}-111$.

Indirect effect through both M_{1} and M_{2}

- A natural indirect effect through both M_{1} and M_{2} is of the form:

Indirect effect through both M_{1} and M_{2}

- A natural indirect effect through both M_{1} and M_{2} is of the form:

$$
E\left\{Y\left(x, M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime \prime}, M_{1}(1)\right)\right)-Y\left(x, M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime \prime}, M_{1}(0)\right)\right)\right\}
$$

Indirect effect through both M_{1} and M_{2}

- A natural indirect effect through both M_{1} and M_{2} is of the form:

$$
E\left\{Y\left(x, M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime \prime}, M_{1}(1)\right)\right)-Y\left(x, M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime \prime}, M_{1}(0)\right)\right)\right\}
$$

- The fourth argument changes and all other arguments stay the same, making it an indirect effect through both M_{1} and M_{2}.

Indirect effect through both M_{1} and M_{2}

- A natural indirect effect through both M_{1} and M_{2} is of the form:

$$
E\left\{Y\left(x, M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime \prime}, M_{1}(1)\right)\right)-Y\left(x, M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime \prime}, M_{1}(0)\right)\right)\right\}
$$

- The fourth argument changes and all other arguments stay the same, making it an indirect effect through both M_{1} and M_{2}.

Indirect effect through both M_{1} and M_{2}

- A natural indirect effect through both M_{1} and M_{2} is of the form:

$$
E\left\{Y\left(x, M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime \prime}, M_{1}(1)\right)\right)-Y\left(x, M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime \prime}, M_{1}(0)\right)\right)\right\}
$$

- The fourth argument changes and all other arguments stay the same, making it an indirect effect through both M_{1} and M_{2}.
- There are 8 choices for how to fix $x, x^{\prime}, x^{\prime \prime}$.

Indirect effect through both M_{1} and M_{2}

- A natural indirect effect through both M_{1} and M_{2} is of the form:

$$
E\left\{Y\left(0, M_{1}(0), M_{2}\left(0, M_{1}(1)\right)\right)-Y\left(0, M_{1}(0), M_{2}\left(0, M_{1}(0)\right)\right)\right\}
$$

- The fourth argument changes and all other arguments stay the same, making it an indirect effect through both M_{1} and M_{2}.
- There are 8 choices for how to fix $x, x^{\prime}, x^{\prime \prime}$.
- We can choose $\left(x, x^{\prime}, x^{\prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{12}-000$.
- A natural indirect effect through both M_{1} and M_{2} is of the form:

$$
E\left\{Y\left(0, M_{1}(0), M_{2}\left(1, M_{1}(1)\right)\right)-Y\left(0, M_{1}(0), M_{2}\left(1, M_{1}(0)\right)\right)\right\}
$$

- The fourth argument changes and all other arguments stay the same, making it an indirect effect through both M_{1} and M_{2}.
- There are 8 choices for how to fix $x, x^{\prime}, x^{\prime \prime}$.
- We can choose $\left(x, x^{\prime}, x^{\prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{12}-000$.
- Similarly, can choose $\left(x, x^{\prime}, x^{\prime \prime}\right)=(0,0,1)$. We call this $\mathrm{NIE}_{12}-001$.

Indirect effect through both M_{1} and M_{2}

- A natural indirect effect through both M_{1} and M_{2} is of the form:

$$
E\left\{Y\left(0, M_{1}(1), M_{2}\left(0, M_{1}(1)\right)\right)-Y\left(0, M_{1}(1), M_{2}\left(0, M_{1}(0)\right)\right)\right\}
$$

- The fourth argument changes and all other arguments stay the same, making it an indirect effect through both M_{1} and M_{2}.
- There are 8 choices for how to fix $x, x^{\prime}, x^{\prime \prime}$.
- We can choose $\left(x, x^{\prime}, x^{\prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{12}-000$.
- Similarly, can choose $\left(x, x^{\prime}, x^{\prime \prime}\right)=(0,1,0)$. We call this $\mathrm{NIE}_{12}-010$.

Indirect effect through both M_{1} and M_{2}

- A natural indirect effect through both M_{1} and M_{2} is of the form:

$$
E\left\{Y\left(0, M_{1}(1), M_{2}\left(1, M_{1}(1)\right)\right)-Y\left(0, M_{1}(1), M_{2}\left(1, M_{1}(0)\right)\right)\right\}
$$

- The fourth argument changes and all other arguments stay the same, making it an indirect effect through both M_{1} and M_{2}.
- There are 8 choices for how to fix $x, x^{\prime}, x^{\prime \prime}$.
- We can choose $\left(x, x^{\prime}, x^{\prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{12}-000$.
- Similarly, can choose $\left(x, x^{\prime}, x^{\prime \prime}\right)=(0,1,1)$. We call this $\mathrm{NIE}_{12}-011$.

Indirect effect through both M_{1} and M_{2}

- A natural indirect effect through both M_{1} and M_{2} is of the form:

$$
E\left\{Y\left(1, M_{1}(0), M_{2}\left(0, M_{1}(1)\right)\right)-Y\left(1, M_{1}(0), M_{2}\left(0, M_{1}(0)\right)\right)\right\}
$$

- The fourth argument changes and all other arguments stay the same, making it an indirect effect through both M_{1} and M_{2}.
- There are 8 choices for how to fix $x, x^{\prime}, x^{\prime \prime}$.
- We can choose $\left(x, x^{\prime}, x^{\prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{12}-000$.
- Similarly, can choose $\left(x, x^{\prime}, x^{\prime \prime}\right)=(1,0,0)$. We call this $\mathrm{NIE}_{12}-100$.

Indirect effect through both M_{1} and M_{2}

- A natural indirect effect through both M_{1} and M_{2} is of the form:

$$
E\left\{Y\left(1, M_{1}(0), M_{2}\left(1, M_{1}(1)\right)\right)-Y\left(1, M_{1}(0), M_{2}\left(1, M_{1}(0)\right)\right)\right\}
$$

- The fourth argument changes and all other arguments stay the same, making it an indirect effect through both M_{1} and M_{2}.
- There are 8 choices for how to fix $x, x^{\prime}, x^{\prime \prime}$.
- We can choose $\left(x, x^{\prime}, x^{\prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{12}-000$.
- Similarly, can choose $\left(x, x^{\prime}, x^{\prime \prime}\right)=(1,0,1)$. We call this $\mathrm{NIE}_{12}-101$.

Indirect effect through both M_{1} and M_{2}

- A natural indirect effect through both M_{1} and M_{2} is of the form:

$$
E\left\{Y\left(1, M_{1}(1), M_{2}\left(0, M_{1}(1)\right)\right)-Y\left(1, M_{1}(1), M_{2}\left(0, M_{1}(0)\right)\right)\right\}
$$

- The fourth argument changes and all other arguments stay the same, making it an indirect effect through both M_{1} and M_{2}.
- There are 8 choices for how to fix $x, x^{\prime}, x^{\prime \prime}$.
- We can choose $\left(x, x^{\prime}, x^{\prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{12}-000$.
- Similarly, can choose $\left(x, x^{\prime}, x^{\prime \prime}\right)=(1,1,0)$. We call this $\mathrm{NIE}_{12}-110$.

Indirect effect through both M_{1} and M_{2}

- A natural indirect effect through both M_{1} and M_{2} is of the form:

$$
E\left\{Y\left(1, M_{1}(1), M_{2}\left(1, M_{1}(1)\right)\right)-Y\left(1, M_{1}(1), M_{2}\left(1, M_{1}(0)\right)\right)\right\}
$$

- The fourth argument changes and all other arguments stay the same, making it an indirect effect through both M_{1} and M_{2}.
- There are 8 choices for how to fix $x, x^{\prime}, x^{\prime \prime}$.
- We can choose $\left(x, x^{\prime}, x^{\prime \prime}\right)=(0,0,0)$. We call this $\mathrm{NIE}_{12}-000$.
- Similarly, can choose $\left(x, x^{\prime}, x^{\prime \prime}\right)=(1,1,1)$. We call this $\mathrm{NIE}_{12}-111$.

Outline

(1) Setting the scene

Quick summary of yesterday Today's case study
Mediation analysis with multiple mediators
Sequential mediation analysis
Interventional effects for multiple mediators
(2) Case study
(3) $Q \& A$
(4) References

- For more about the different possible decompositions of the TCE into the many path-specific effects defined above, and assumptions under which this can be achieved, see Daniel et al, Biometrics (2015).
- For more about the different possible decompositions of the TCE into the many path-specific effects defined above, and assumptions under which this can be achieved, see Daniel et al, Biometrics (2015).
- But for today, we'll focus on a simpler, more practical and intuitive idea presented by VanderWeele et al (2014), known as sequential mediation analysis.

- First we consider M_{1} and M_{2} to be joint mediators.

- First we consider M_{1} and M_{2} to be joint mediators.
- This allows us to use single mediator analysis, with $\left(M_{1}, M_{2}\right)$ as the mediator.

- We thus estimate
$\mathrm{NDE}_{\mathrm{joint}}=E\left\{Y\left(1, M_{1}(0), M_{2}\left(0, M_{1}(0)\right)\right)-Y\left(0, M_{1}(0), M_{2}\left(0, M_{1}(0)\right)\right)\right\}$ and
$\mathrm{NIE}_{\text {joint }}=E\left\{Y\left(1, M_{1}(1), M_{2}\left(1, M_{1}(1)\right)\right)-Y\left(1, M_{1}(0), M_{2}\left(0, M_{1}(0)\right)\right)\right\}$ with
$\mathrm{TCE}=\mathrm{NDE}_{\text {joint }}+\mathrm{NIE}_{\text {joint }}$

- Next we consider M_{1} to be the only mediator of interest, and we ignore M_{2}.

- Next we consider M_{1} to be the only mediator of interest, and we ignore M_{2}.
- This allows us to use single mediator analysis, with M_{1} as the mediator.

- Next we consider M_{1} to be the only mediator of interest, and we ignore M_{2}.
- This allows us to use single mediator analysis, with M_{1} as the mediator.
- The direct effect then includes the effect via neither M_{1} nor M_{2} and the effect through M_{2} alone, whereas the indirect effect includes the effect via M_{1} alone and the effect via both M_{1} and M_{2},

- In other words, we estimate
$\operatorname{NDE}_{\text {not }} M_{1}=E\left\{Y\left(1, M_{1}(0), M_{2}\left(1, M_{1}(0)\right)\right)-Y\left(0, M_{1}(0), M_{2}\left(0, M_{1}(0)\right)\right)\right\}$ and

$$
\operatorname{NIE}_{M_{1}}=E\left\{Y\left(1, M_{1}(1), M_{2}\left(1, M_{1}(1)\right)\right)-Y\left(1, M_{1}(0), M_{2}\left(1, M_{1}(0)\right)\right)\right\}
$$

with

$$
\mathrm{TCE}=\mathrm{NDE}_{M_{1}}+\mathrm{NIE}_{M_{1}}
$$

- We then note that we can obtain (one of) the indirect effect(s) through M_{2} alone by taking the difference between $\mathrm{NIE}_{\text {joint }}$ and $\mathrm{NIE}_{M_{1}}$:

$$
\begin{aligned}
\mathrm{NIE}_{\text {joint }}-\mathrm{NIE}_{M_{1}} & =E\left\{Y\left(1, M_{1}(0), M_{2}\left(1, M_{1}(0)\right)\right)-Y\left(1, M_{1}(0), M_{2}\left(0, M_{1}(0)\right)\right)\right. \\
& =\operatorname{NIE}_{M_{2}}-100
\end{aligned}
$$

- Sequential mediation analysis doesn't require any further results on identification nor any new methods for estimation, since it is simply an application of single mediator analysis twice: once with M_{1} and M_{2} as joint mediators, and then with M_{1} as the only mediator.
- Sequential mediation analysis doesn't require any further results on identification nor any new methods for estimation, since it is simply an application of single mediator analysis twice: once with M_{1} and M_{2} as joint mediators, and then with M_{1} as the only mediator.
- Writing \mathbf{M} for $\left(M_{1}, M_{2}\right)$, the assumptions for identification therefore include that there should be no unmeasured confounders of X and \mathbf{M}, X and Y, \mathbf{M} and Y, X and M_{1}, M_{1} and Y, and no confounders (measured or unmeasured) of \mathbf{M} and Y or of M_{1} and Y that are affected by X.
- Sequential mediation analysis doesn't require any further results on identification nor any new methods for estimation, since it is simply an application of single mediator analysis twice: once with M_{1} and M_{2} as joint mediators, and then with M_{1} as the only mediator.
- Writing \mathbf{M} for $\left(M_{1}, M_{2}\right)$, the assumptions for identification therefore include that there should be no unmeasured confounders of X and \mathbf{M}, X and Y, \mathbf{M} and Y, X and M_{1}, M_{1} and Y, and no confounders (measured or unmeasured) of \mathbf{M} and Y or of M_{1} and Y that are affected by X.
- This means that in order to apply sequential mediation analysis, we need to know the order of the mediators (i.e. M_{1} affects M_{2} but not vice versa) and the mediators cannot share any unmeasured common causes (since this would violate the no unmeasured confounding assumption for M_{1} and Y).
- Sequential mediation analysis doesn't require any further results on identification nor any new methods for estimation, since it is simply an application of single mediator analysis twice: once with M_{1} and M_{2} as joint mediators, and then with M_{1} as the only mediator.
- Writing \mathbf{M} for $\left(M_{1}, M_{2}\right)$, the assumptions for identification therefore include that there should be no unmeasured confounders of X and \mathbf{M}, X and Y, \mathbf{M} and Y, X and M_{1}, M_{1} and Y, and no confounders (measured or unmeasured) of \mathbf{M} and Y or of M_{1} and Y that are affected by X.
- This means that in order to apply sequential mediation analysis, we need to know the order of the mediators (i.e. M_{1} affects M_{2} but not vice versa) and the mediators cannot share any unmeasured common causes (since this would violate the no unmeasured confounding assumption for M_{1} and Y).
- In many practical applications, these assumptions are implausible.
- Sequential mediation analysis doesn't require any further results on identification nor any new methods for estimation, since it is simply an application of single mediator analysis twice: once with M_{1} and M_{2} as joint mediators, and then with M_{1} as the only mediator.
- Writing \mathbf{M} for $\left(M_{1}, M_{2}\right)$, the assumptions for identification therefore include that there should be no unmeasured confounders of X and \mathbf{M}, X and Y, \mathbf{M} and Y, X and M_{1}, M_{1} and Y, and no confounders (measured or unmeasured) of \mathbf{M} and Y or of M_{1} and Y that are affected by X.
- This means that in order to apply sequential mediation analysis, we need to know the order of the mediators (i.e. M_{1} affects M_{2} but not vice versa) and the mediators cannot share any unmeasured common causes (since this would violate the no unmeasured confounding assumption for M_{1} and Y).
- In many practical applications, these assumptions are implausible.
- So we now turn to an alternative, based on interventional effects.

Outline

(1) Setting the scene

Quick summary of yesterday Today's case study
Mediation analysis with multiple mediators Sequential mediation analysis
Interventional effects for multiple mediators
(2) Case study
(3) Q\&A
(4) References

- In Vansteelandt and Daniel (2017), we proposed an extension of the single mediator interventional effects to multiple mediator settings.

Our proposal

- In Vansteelandt and Daniel (2017), we proposed an extension of the single mediator interventional effects to multiple mediator settings.
- The effects we define will sum to the total causal effect.
- In Vansteelandt and Daniel (2017), we proposed an extension of the single mediator interventional effects to multiple mediator settings.
- The effects we define will sum to the total causal effect.
- Identification will be possible under no interference, consistency, no unmeasured confounding of $X-\mathbf{M}, X-Y$ and $\mathbf{M}-Y$, where the mediators \mathbf{M} are for this purpose considered en bloc.
- In Vansteelandt and Daniel (2017), we proposed an extension of the single mediator interventional effects to multiple mediator settings.
- The effects we define will sum to the total causal effect.
- Identification will be possible under no interference, consistency, no unmeasured confounding of $X-\mathbf{M}, X-Y$ and $\mathbf{M}-Y$, where the mediators \mathbf{M} are for this purpose considered en bloc.
- We will not need to assume no unmeasured confounding between different mediators, and we won't require knowledge of the order of the mediators.
- In Vansteelandt and Daniel (2017), we proposed an extension of the single mediator interventional effects to multiple mediator settings.
- The effects we define will sum to the total causal effect.
- Identification will be possible under no interference, consistency, no unmeasured confounding of $X-\mathbf{M}, X-Y$ and $\mathbf{M}-Y$, where the mediators \mathbf{M} are for this purpose considered en bloc.
- We will not need to assume no unmeasured confounding between different mediators, and we won't require knowledge of the order of the mediators.
- For simplicity, we again describe our approach for two mediators.

With two mediators we propose the following definition of an interventional direct effect:

$$
\begin{aligned}
& \sum_{\mathbf{c}} \sum_{m_{1}} \sum_{m_{2}}\left[E\left\{Y\left(1, m_{1}, m_{2}\right) \mid \mathbf{C}=\mathbf{c}\right\}-E\left\{Y\left(0, m_{1}, m_{2}\right) \mid \mathbf{C}=\mathbf{c}\right\}\right] \\
& P\left\{M_{1}(0)\right.\left.=m_{1}, M_{2}(0)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\} P(\mathbf{C}=\mathbf{c})
\end{aligned}
$$

Interventional direct effect through neither M_{1} nor M_{2}

With two mediators we propose the following definition of an interventional direct effect:

$$
\begin{aligned}
\sum_{\mathbf{c}} \sum_{m_{1}} \sum_{m_{2}}\left[E \left\{Y\left(1, m_{1}, m_{2}\right) \mid \mathbf{C}\right.\right. & \left.=\mathbf{c}\}-E\left\{Y\left(0, m_{1}, m_{2}\right) \mid \mathbf{C}=\mathbf{c}\right\}\right] \\
P\left\{M_{1}(0)\right. & \left.=m_{1}, M_{2}(0)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\} P(\mathbf{C}=\mathbf{c})
\end{aligned}
$$

- This expresses the exposure effect when fixing the joint distribution of both mediators (by controlling the mediators for each subject at a random draw from their counterfactual joint distribution with the exposure set at 0 , given covariates \mathbf{C}).

Interventional indirect effect through M_{1}

We propose the following definition of an interventional indirect effect throught M_{1} :

$$
\begin{aligned}
\sum_{\mathbf{c}} \sum_{m_{1}} \sum_{m_{2}} E\left\{Y\left(1, m_{1}, m_{2}\right) \mid \mathbf{C}=\mathbf{c}\right\} & \\
\quad\left[P\left\{M_{1}(1)=m_{1} \mid \mathbf{C}=\mathbf{c}\right\}-\right. & \left.P\left\{M_{1}(0)=m_{1} \mid \mathbf{C}=\mathbf{c}\right\}\right] \\
& \cdot P\left\{M_{2}(0)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\} P(\mathbf{C}=\mathbf{c})
\end{aligned}
$$

We propose the following definition of an interventional indirect effect throught M_{1} :

$$
\begin{aligned}
\sum_{\mathbf{c}} \sum_{m_{1}} \sum_{m_{2}} E\left\{Y\left(1, m_{1}, m_{2}\right) \mid \mathbf{C}=\mathbf{c}\right\} & \\
\quad\left[P\left\{M_{1}(1)=m_{1} \mid \mathbf{C}=\mathbf{c}\right\}-\right. & \left.P\left\{M_{1}(0)=m_{1} \mid \mathbf{C}=\mathbf{c}\right\}\right] \\
& \cdot P\left\{M_{2}(0)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\} P(\mathbf{C}=\mathbf{c})
\end{aligned}
$$

- This expresses the effect of shifting the distribution of mediator M_{1} from the counterfactual distribution (given covariates) at exposure level 0 to that at level 1, while fixing the exposure at 1 and the mediator M_{2} to a random subject-specific draw from the counterfactual distribution (given covariates) at level 0 for all subjects.

We propose the following definition of an interventional indirect effect throught M_{1} :

$$
\begin{aligned}
\sum_{\mathbf{c}} \sum_{m_{1}} \sum_{m_{2}} E\left\{Y\left(1, m_{1}, m_{2}\right) \mid \mathbf{C}=\mathbf{c}\right\} & \\
\quad\left[P\left\{M_{1}(1)=m_{1} \mid \mathbf{C}=\mathbf{c}\right\}-\right. & \left.P\left\{M_{1}(0)=m_{1} \mid \mathbf{C}=\mathbf{c}\right\}\right] \\
& \cdot P\left\{M_{2}(0)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\} P(\mathbf{C}=\mathbf{c})
\end{aligned}
$$

- This expresses the effect of shifting the distribution of mediator M_{1} from the counterfactual distribution (given covariates) at exposure level 0 to that at level 1, while fixing the exposure at 1 and the mediator M_{2} to a random subject-specific draw from the counterfactual distribution (given covariates) at level 0 for all subjects.
- This effect captures all of the exposure effect that is mediated by M_{1}, but not by causal descendants of M_{1} in the graph.

We propose the following definition of an interventional indirect effect throught M_{2} :

$$
\begin{aligned}
\sum_{\mathbf{c}} \sum_{m_{1}} \sum_{m_{2}} E\left\{Y\left(1, m_{1}, m_{2}\right) \mid \mathbf{C}=\mathbf{c}\right\} & \\
\quad\left[P\left\{M_{2}(1)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\}-\right. & \left.P\left\{M_{2}(0)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\}\right] \\
& \cdot P\left\{M_{1}(0)=m_{1} \mid \mathbf{C}=\mathbf{c}\right\} P(\mathbf{C}=\mathbf{c})
\end{aligned}
$$

We propose the following definition of an interventional indirect effect throught M_{2} :

$$
\begin{aligned}
\sum_{\mathbf{c}} \sum_{m_{1}} \sum_{m_{2}} E\left\{Y\left(1, m_{1}, m_{2}\right) \mid \mathbf{C}=\mathbf{c}\right\} & \\
\quad\left[P\left\{M_{2}(1)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\}-\right. & \left.P\left\{M_{2}(0)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\}\right] \\
& \cdot P\left\{M_{1}(0)=m_{1} \mid \mathbf{C}=\mathbf{c}\right\} P(\mathbf{C}=\mathbf{c})
\end{aligned}
$$

- This expresses the effect of shifting the distribution of mediator M_{2} from the counterfactual distribution (given covariates) at exposure level 0 to that at level 1, while fixing the exposure at 1 and the mediator M_{1} to a random subject-specific draw from the counterfactual distribution (given covariates) at level 0 for all subjects.

We propose the following definition of an interventional indirect effect throught M_{2} :

$$
\begin{aligned}
\sum_{\mathbf{c}} \sum_{m_{1}} \sum_{m_{2}} E\left\{Y\left(1, m_{1}, m_{2}\right) \mid \mathbf{C}=\mathbf{c}\right\} & \\
\quad\left[P\left\{M_{2}(1)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\}-\right. & \left.P\left\{M_{2}(0)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\}\right] \\
& \cdot P\left\{M_{1}(0)=m_{1} \mid \mathbf{C}=\mathbf{c}\right\} P(\mathbf{C}=\mathbf{c})
\end{aligned}
$$

- This expresses the effect of shifting the distribution of mediator M_{2} from the counterfactual distribution (given covariates) at exposure level 0 to that at level 1, while fixing the exposure at 1 and the mediator M_{1} to a random subject-specific draw from the counterfactual distribution (given covariates) at level 0 for all subjects.
- This effect captures all of the exposure effect that is mediated by M_{2}, but not by causal descendants of M_{2} in the graph.

Remainder?

Finally, the TCE decomposes into the sum of the three previous effects plus a remainder term:

$$
\begin{aligned}
& \sum_{\mathbf{c}} \sum_{m_{1}} \sum_{m_{2}} E\left\{Y\left(1, m_{1}, m_{2}\right) \mid \mathbf{C}=\mathbf{c}\right\} \\
& {\left[P\left\{M_{1}(1)=m_{1}, M_{2}(1)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\}\right.} \\
&- P\left\{M_{1}(1)=m_{1} \mid \mathbf{C}=\mathbf{c}\right\} P\left\{M_{2}(1)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\} \\
&-P\left\{M_{1}(0)=m_{1}, M_{2}(0)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\} \\
&+\left.P\left\{M_{1}(0)=m_{1} \mid \mathbf{C}=\mathbf{c}\right\} P\left\{M_{2}(0)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\}\right] P(\mathbf{C}=\mathbf{c})
\end{aligned}
$$

Remainder?

Finally, the TCE decomposes into the sum of the three previous effects plus a remainder term:

$$
\begin{aligned}
& \sum_{\mathbf{c}} \sum_{m_{1}} \sum_{m_{2}} E\left\{Y\left(1, m_{1}, m_{2}\right) \mid \mathbf{C}=\mathbf{c}\right\} \\
& {\left[P\left\{M_{1}(1)=m_{1}, M_{2}(1)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\}\right.} \\
&- P\left\{M_{1}(1)=m_{1} \mid \mathbf{C}=\mathbf{c}\right\} P\left\{M_{2}(1)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\} \\
&-P\left\{M_{1}(0)=m_{1}, M_{2}(0)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\} \\
&+\left.P\left\{M_{1}(0)=m_{1} \mid \mathbf{C}=\mathbf{c}\right\} P\left\{M_{2}(0)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\}\right] P(\mathbf{C}=\mathbf{c})
\end{aligned}
$$

- This can be interpreted as the indirect effect of X on Y mediated through the dependence between M_{1} and M_{2} (given \mathbf{C}).

Suppose the outcome obeys the model:

$$
\begin{aligned}
& E\left(Y \mid X=x, M_{1}=m_{1}, M_{2}=m_{2}, \mathbf{C}=\mathbf{c}\right) \\
= & \theta_{0}+\theta_{1} x+\theta_{2} m_{1}+\theta_{3} m_{2}+\theta_{4} m_{1} m_{2}+\theta_{5} x m_{1}+\theta_{6} x m_{2}+\theta_{7}^{T} \mathbf{c}
\end{aligned}
$$

and the mediators $\left(M_{1}, M_{2}\right)$, conditional on X and C , have means

$$
E\left(M_{j} \mid X=x, \mathbf{C}=\mathbf{c}\right)=\beta_{0 j}+\beta_{1 j} x+\beta_{2 j}^{T} \mathbf{c},
$$

with residual variances $\sigma_{j}^{2}, j=1,2$, and covariance σ_{12}.
Then the interventional direct effect is given by

$$
\begin{aligned}
& E\left\{\theta_{1}+\theta_{5}\left(\beta_{01}+\beta_{21}^{T} \mathbf{C}\right)+\theta_{6}\left(\beta_{02}+\beta_{22}^{T} \mathbf{C}\right)\right\} \\
& =\theta_{1}+\theta_{5}\left\{\beta_{01}+\beta_{21}^{T} E(\mathbf{C})\right\}+\theta_{6}\left\{\beta_{02}+\beta_{22}^{T} E(\mathbf{C})\right\}
\end{aligned}
$$

This is θ_{1} in the absence of exposure-mediator interactions.

Suppose the outcome obeys the model:

$$
\begin{aligned}
& \quad E\left(Y \mid X=x, M_{1}=m_{1}, M_{2}=m_{2}, \mathbf{C}=\mathbf{c}\right) \\
& =\theta_{0}+\theta_{1} x+\theta_{2} m_{1}+\theta_{3} m_{2}+\theta_{4} m_{1} m_{2}+\theta_{5} x m_{1}+\theta_{6} x m_{2}+\theta_{7}^{T} \mathbf{c}
\end{aligned}
$$

and the mediators (M_{1}, M_{2}), conditional on X and C , have means

$$
E\left(M_{j} \mid X=x, \mathbf{C}=\mathbf{c}\right)=\beta_{0 j}+\beta_{1 j} x+\beta_{2 j}^{T} \mathbf{c}
$$

with residual variances $\sigma_{j}^{2}, j=1,2$, and covariance σ_{12}.
The interventional indirect effect via M_{1} is

$$
\left[\theta_{2}+\theta_{4}\left\{\beta_{02}+\beta_{22}^{T} E(\mathbf{C})\right\}+\theta_{5}\right] \beta_{11}
$$

which is $\theta_{2} \beta_{11}$ in the absence of exposure-mediator and mediator-mediator interactions.

Suppose the outcome obeys the model:

$$
\begin{aligned}
& \quad E\left(Y \mid X=x, M_{1}=m_{1}, M_{2}=m_{2}, \mathbf{C}=\mathbf{c}\right) \\
& =\theta_{0}+\theta_{1} x+\theta_{2} m_{1}+\theta_{3} m_{2}+\theta_{4} m_{1} m_{2}+\theta_{5} x m_{1}+\theta_{6} x m_{2}+\theta_{7}^{T} \mathbf{c}
\end{aligned}
$$

and the mediators (M_{1}, M_{2}), conditional on X and C , have means

$$
E\left(M_{j} \mid X=x, \mathbf{C}=\mathbf{c}\right)=\beta_{0 j}+\beta_{1 j} x+\beta_{2 j}^{T} \mathbf{c}
$$

with residual variances $\sigma_{j}^{2}, j=1,2$, and covariance σ_{12}.
The interventional indirect effect via M_{2} is

$$
\left[\theta_{3}+\theta_{4}\left\{\beta_{01}+\beta_{11}+\beta_{21}^{T} E(\mathbf{C})\right\}+\theta_{6}\right] \beta_{12}
$$

which is $\theta_{3} \beta_{12}$ in the absence of exposure-mediator and mediator-mediator interactions.

Suppose the outcome obeys the model:

$$
\begin{aligned}
& E\left(Y \mid X=x, M_{1}=m_{1}, M_{2}=m_{2}, \mathbf{C}=\mathbf{c}\right) \\
= & \theta_{0}+\theta_{1} x+\theta_{2} m_{1}+\theta_{3} m_{2}+\theta_{4} m_{1} m_{2}+\theta_{5} x m_{1}+\theta_{6} x m_{2}+\theta_{7}^{T} \mathbf{c}
\end{aligned}
$$

and the mediators (M_{1}, M_{2}), conditional on X and C , have means

$$
E\left(M_{j} \mid X=x, \mathbf{C}=\mathbf{c}\right)=\beta_{0 j}+\beta_{1 j} x+\beta_{2 j}^{T} \mathbf{c},
$$

with residual variances $\sigma_{j}^{2}, j=1,2$, and covariance σ_{12}.
Finally, the indirect effect resulting from the effect of exposure on the mediators' dependence (the 'remainder' term) is

$$
\theta_{4} \sigma_{12}-\theta_{4} \sigma_{12}=0
$$

Suppose the outcome obeys the model:

$$
\begin{aligned}
& \quad E\left(Y \mid X=x, M_{1}=m_{1}, M_{2}=m_{2}, \mathbf{C}=\mathbf{c}\right) \\
& =\theta_{0}+\theta_{1} x+\theta_{2} m_{1}+\theta_{3} m_{2}+\theta_{4} m_{1} m_{2}+\theta_{5} x m_{1}+\theta_{6} x m_{2}+\theta_{7}^{T} \mathbf{c}
\end{aligned}
$$

and the mediators (M_{1}, M_{2}), conditional on X and C, have means

$$
E\left(M_{1} \mid X=x, \mathbf{C}=\mathbf{c}\right)=\beta_{01}+\beta_{11} x+\beta_{21}^{T} \mathbf{c}
$$

$E\left(M_{2} \mid M_{1}=m_{1}, X=x, \mathbf{C}=\mathbf{c}\right)=\beta_{02}+\beta_{12} x+\beta_{22}^{T} \mathbf{c}+\beta_{32} m_{1}+\beta_{42} x m_{1}$
with residual variances $\sigma_{j}^{2}, j=1,2$, and covariance σ_{12}.
If instead, X and M_{1} interacted in their effect on M_{2} in the sense above then the remainder term would be

$$
\sigma_{1}^{2} \theta_{4} \beta_{42}
$$

- This regression approach has the drawback that it requires a new derivation each time a different outcome or mediator model is considered.
- This regression approach has the drawback that it requires a new derivation each time a different outcome or mediator model is considered.
- This can be remedied via a Monte-Carlo approach, which involves sampling counterfactual values of the mediators from their respective distributions.

For instance, to evaluate the first component

$$
\begin{aligned}
\sum_{\mathbf{c}} \sum_{m_{1}} \sum_{m_{2}} E\left\{Y\left(1, m_{1}, m_{2}\right) \mid \mathbf{C}=\mathbf{c}\right\} & P\left\{M_{1}(1)=m_{1} \mid \mathbf{C}=\mathbf{c}\right\} \\
& P\left\{M_{2}(0)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\} P(\mathbf{C}=\mathbf{c})
\end{aligned}
$$

of the interventional indirect effect through M_{1}, we can:

For instance, to evaluate the first component

$$
\begin{aligned}
\sum_{\mathbf{c}} \sum_{m_{1}} \sum_{m_{2}} E\left\{Y\left(1, m_{1}, m_{2}\right) \mid \mathbf{C}=\mathbf{c}\right\} & P\left\{M_{1}(1)=m_{1} \mid \mathbf{C}=\mathbf{c}\right\} \\
& P\left\{M_{2}(0)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\} P(\mathbf{C}=\mathbf{c})
\end{aligned}
$$

of the interventional indirect effect through M_{1}, we can:

- take a random draw $M_{2, i}(0)$ for each subject i from the (fitted) distribution $P\left(M_{2} \mid X=0, \mathbf{C}_{i}\right)$

For instance, to evaluate the first component

$$
\begin{aligned}
\sum_{\mathbf{c}} \sum_{m_{1}} \sum_{m_{2}} E\left\{Y\left(1, m_{1}, m_{2}\right) \mid \mathbf{C}=\mathbf{c}\right\} & P\left\{M_{1}(1)=m_{1} \mid \mathbf{C}=\mathbf{c}\right\} \\
& P\left\{M_{2}(0)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\} P(\mathbf{C}=\mathbf{c})
\end{aligned}
$$

of the interventional indirect effect through M_{1}, we can:

- take a random draw $M_{2, i}(0)$ for each subject i from the (fitted) distribution $P\left(M_{2} \mid X=0, \mathbf{C}_{i}\right)$
- then take a random draw $M_{1, i}(1)$ for each subject i from the (fitted) distribution $P\left(M_{1} \mid X=1, \mathbf{C}_{i}\right)$

For instance, to evaluate the first component

$$
\begin{aligned}
\sum_{\mathbf{c}} \sum_{m_{1}} \sum_{m_{2}} E\left\{Y\left(1, m_{1}, m_{2}\right) \mid \mathbf{C}=\mathbf{c}\right\} & P\left\{M_{1}(1)=m_{1} \mid \mathbf{C}=\mathbf{c}\right\} \\
& P\left\{M_{2}(0)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\} P(\mathbf{C}=\mathbf{c})
\end{aligned}
$$

of the interventional indirect effect through M_{1}, we can:

- take a random draw $M_{2, i}(0)$ for each subject i from the (fitted) distribution $P\left(M_{2} \mid X=0, \mathbf{C}_{i}\right)$
- then take a random draw $M_{1, i}(1)$ for each subject i from the (fitted) distribution $P\left(M_{1} \mid X=1, \mathbf{C}_{i}\right)$
- Finally, we predict the outcome as the expected outcome under a suitable model with exposure set to $1, M_{1}$ set to $M_{1, i}(1), M_{2}$ set to $M_{1, i}(0)$, and covariates \mathbf{C}_{i}.

For instance, to evaluate the first component

$$
\begin{aligned}
\sum_{\mathbf{c}} \sum_{m_{1}} \sum_{m_{2}} E\left\{Y\left(1, m_{1}, m_{2}\right) \mid \mathbf{C}=\mathbf{c}\right\} & P\left\{M_{1}(1)=m_{1} \mid \mathbf{C}=\mathbf{c}\right\} \\
& P\left\{M_{2}(0)=m_{2} \mid \mathbf{C}=\mathbf{c}\right\} P(\mathbf{C}=\mathbf{c})
\end{aligned}
$$

of the interventional indirect effect through M_{1}, we can:

- take a random draw $M_{2, i}(0)$ for each subject i from the (fitted) distribution $P\left(M_{2} \mid X=0, \mathbf{C}_{i}\right)$
- then take a random draw $M_{1, i}(1)$ for each subject i from the (fitted) distribution $P\left(M_{1} \mid X=1, \mathbf{C}_{i}\right)$
- Finally, we predict the outcome as the expected outcome under a suitable model with exposure set to $1, M_{1}$ set to $M_{1, i}(1), M_{2}$ set to $M_{1, i}(0)$, and covariates \mathbf{C}_{i}.
- The average of these fitted values across subjects then estimates the above component.
- Its performance can be improved by repeating the random sampling many times and averaging the results across the different Monte-Carlo runs.
- Its performance can be improved by repeating the random sampling many times and averaging the results across the different Monte-Carlo runs.
- In practice, we recommend the bootstrap for inference.

Outline

(1) Setting the scene Quick summary of yesterday Today's case study Mediation analysis with multiple mediators Sequential mediation analysis Interventional effects for multiple mediators

(2) Case study

(3) Q\&A
4) References

NYCRIS data: reminder

- Northern and Yorkshire Cancer Registry Information Service (NYCRIS), a population-based cancer registry covering 12\% of the English population

NYCRIS data: reminder

- Northern and Yorkshire Cancer Registry Information Service (NYCRIS), a population-based cancer registry covering 12\% of the English population
- Survival to 1 year: 95.9% in higher SES women vs. 93.2% in lower SES women

NYCRIS data: reminder

- Northern and Yorkshire Cancer Registry Information Service (NYCRIS), a population-based cancer registry covering 12\% of the English population
- Survival to 1 year: 95.9% in higher SES women vs. 93.2% in lower SES women
- Survival to 5 years: 64.7% vs. 54.1%
- Northern and Yorkshire Cancer Registry Information Service (NYCRIS), a population-based cancer registry covering 12% of the English population
- Survival to 1 year: 95.9% in higher SES women vs. 93.2% in lower SES women
- Survival to 5 years: 64.7% vs. 54.1%
- Question: what explains this? Screening? Treatment?

Pseudo NYCRIS data

- Simulated data: 29,580 women mimicking all those diagnosed with malignant, invasive breast cancer 2000-2006.

Pseudo NYCRIS data

- Simulated data: 29,580 women mimicking all those diagnosed with malignant, invasive breast cancer 2000-2006.
- X : SES (dichotomised for simplicity, from IMD2001)

Pseudo NYCRIS data

- Simulated data: 29,580 women mimicking all those diagnosed with malignant, invasive breast cancer 2000-2006.
- X : SES (dichotomised for simplicity, from IMD2001)
- \mathbf{M}_{1} : Age (m1a) and stage (m1b) (TNM stage 1-2 vs $3-4$) at diagnosis

Pseudo NYCRIS data

- Simulated data: 29,580 women mimicking all those diagnosed with malignant, invasive breast cancer 2000-2006.
- X : SES (dichotomised for simplicity, from IMD2001)
- \mathbf{M}_{1} : Age (m1a) and stage (m1b) (TNM stage 1-2 vs $3-4$) at diagnosis
- M_{2} : Treatment ('major' vs 'minor or no' surgery)

Pseudo NYCRIS data

- Simulated data: 29,580 women mimicking all those diagnosed with malignant, invasive breast cancer 2000-2006.
- X : SES (dichotomised for simplicity, from IMD2001)
- \mathbf{M}_{1} : Age (m1a) and stage (m1b) (TNM stage 1-2 vs 3-4) at diagnosis
- M_{2} : Treatment ('major' vs 'minor or no' surgery)
- Y : Survival to 1-year post diagnosis

Pseudo NYCRIS data

- Simulated data: 29,580 women mimicking all those diagnosed with malignant, invasive breast cancer 2000-2006.
- X : SES (dichotomised for simplicity, from IMD2001)
- \mathbf{M}_{1} : Age (m1a) and stage (m1b) (TNM stage 1-2 vs $3-4$) at diagnosis
- M_{2} : Treatment ('major' vs 'minor or no' surgery)
- Y : Survival to 1-year post diagnosis
- C: Region (c1), year of diagnosis (c2)

Causal diagram

Question 1

Familiarise yourselves with the dataset and start by exploring mediation using a traditional approach.

For example, you could fit a logistic regression to the outcome given exposure and confounders, and then add in treatment and age/stage at diagnosis, one at a time, looking at how the exposure coefficient changes.

In addition to the problems we identified yesterday, do you now see a new problem with using logistic regression for traditional mediation analysis in this way?

For help with Stata syntax, see CaseStudy2_Q1. do.

Question 2

Now investigate more formally using the sequential mediation analysis approach described at the beginning of the workshop.

I suggest that you use the same approach as we used at the end of yesterday's workshop, i.e. using Monte Carlo simulation. It's probably best to start without including interactions in the models, and then to add these in a second analysis. The interactions are in fact strong in this example, and so it is important that you include them eventually.

For more help with the Stata syntax, see CaseStudy2_Q2. do.

Question 3

Finally, again using MC simulation, estimate the interventional multiple mediator effects.

How large is the remainder (mediated dependence) term? Can you interpret it in terms of public health?

For more help with the Stata syntax, see CaseStudy2_Q3. do.

Outline

(1) Setting the scene Quick summary of yesterday Today's case study Mediation analysis with multiple mediators Sequential mediation analysis Interventional effects for multiple mediators
(2) Case study
(3) Q\&A
(4) References

Results

Original data, so some differences with the simulated dataset, but similar

- Mediation estimands estimated using Monte Carlo simulation (6,000,000 draws, 1,000 bootstrap samples)
- Mediation estimands estimated using Monte Carlo simulation (6,000,000 draws, 1,000 bootstrap samples)
- All interactions included in all models.

Results
 Original data, so some differences with the simulated dataset, but similar

- Mediation estimands estimated using Monte Carlo simulation (6,000,000 draws, 1,000 bootstrap samples)
- All interactions included in all models.

Effect	Estimate	Bootstrap	$95 \% \mathrm{Cl}$	
		SE	lower	upper
Total causal effect	0.028	0.0028	0.023	0.034
Int DE	0.013	0.0027	0.008	0.018
Int IE through \mathbf{M}_{1}	0.007	0.0008	0.005	0.008
Int IE through M_{2}	0.0002	0.0003	-0.0005	0.0008
Remainder	0.007	0.0009	0.005	0.009

Results
 Original data, so some differences with the simulated dataset, but similar

- Mediation estimands estimated using Monte Carlo simulation (6,000,000 draws, 1,000 bootstrap samples)
- All interactions included in all models.

Effect	Estimate	Bootstrap	$95 \% \mathrm{CI}$	
		SE	lower	upper
Total causal effect	0.028	0.0028	0.023	0.034
Int DE	0.013	0.0027	0.008	0.018
Int IE through \mathbf{M}_{1}	0.007	0.0008	0.005	0.008
Int IE through M_{2}	0.0002	0.0003	-0.0005	0.0008
Remainder	0.007	0.0009	0.005	0.009

Results of logistic regression of Treatment $\left(M_{2}\right)$ on SES (X), Stage and Age at diagnosis $\left(\mathbf{M}_{1}\right)$, and Region and Year of diagnosis (\mathbf{C}) :

	Estimate	SE	95% CI	
			lower	upper
Baseline odds Conditional odds ratios	4.796	0.226	4.373	5.261
SES higher				
Age at diagnosis $(\mathrm{yrs})^{* *}$	0.725	0.026	0.677	0.777
Stage	0.937	0.002	0.934	0.941
advanced	0.186	0.009	0.169	0.205
SES \times Agediag	1.033	0.003	1.027	1.038
SES \times Stage	1.799	0.152	1.525	2.123
Agediag \times Stage	1.014	0.004	1.007	1.021
SES \times Agediag \times Stage	0.974	0.006	0.962	0.985
Region				
North-West	1.806	0.155	1.526	2.138
\quad Yorks	0.795	0.025	0.747	0.846
Year of diagnosis				
2001	1.089	0.061	0.976	1.214
2002	1.119	0.062	1.003	1.249
2003	1.248	0.069	1.120	1.390
2004	1.429	0.081	1.280	1.596
2005	1.411	0.079	1.265	1.575
2006	1.442	0.082	1.291	1.611

Treatment is coded 1 for major surgery and 0 for minor or no surgery. * estimated odds of major surgery for women diagnosed in the North East region in 2000, with low SES, age at diagnosis 62 years and early stage. ${ }^{* *}$ centred at the mean age at diagnosis (61.8 years)

Results of logistic regression of Treatment $\left(M_{2}\right)$ on SES (X), Stage and Age at diagnosis $\left(\mathbf{M}_{1}\right)$, and Region and Year of diagnosis (\mathbf{C}) :

	Estimate	SE	95\% CI	
			lower	upper
Baseline odds*	4.796	0.226	4.373	5.261
Conditional odds ratios				
SES				
higher	0.725	0.026	0.677	0.777
Age at diagnosis (yrs)**	0.937	0.002	0.934	0.941
Stage				
advanced	0.186	0.009	0.169	0.205
SES \times Agediag	1.033	0.003	1.027	1.038
SES \times Stage	1.799	0.152	1.525	2.123
Agediag \times Stage	1.014	0.004	1.007	1.021
SES \times Agediag \times Stage	0.974	0.006	0.962	0.985
Region				
North-West	1.806	0.155	1.526	2.138
Yorks	0.795	0.025	0.747	0.846
Year of diagnosis				
2001	1.089	0.061	0.976	1.214
2002	1.119	0.062	1.003	1.249
2003	1.248	0.069	1.120	1.390
2004	1.429	0.081	1.280	1.596
2005	1.411	0.079	1.265	1.575
2006	1.442	0.082	1.291	1.611

Treatment is coded 1 for major surgery and 0 for minor or no surgery. * estimated odds of major surgery for women diagnosed in the North East region in 2000, with low SES, age at diagnosis 62 years and early stage. ${ }^{* *}$ centred at the mean age at diagnosis (61.8 years)

- Without relying on any cross-world assumptions nor any assumptions about the causal structure of the mediators, our results would suggest that, of the 2.8% ($95 \% \mathrm{Cl} 2.3 \%-3.4 \%$) total difference in survival probability, about a quarter of this $(0.7 \%, 95 \% \mathrm{Cl} 0.5 \%-0.9 \%)$ is mediated by the dependence of treatment on stage and age at diagnosis.
- Without relying on any cross-world assumptions nor any assumptions about the causal structure of the mediators, our results would suggest that, of the 2.8% ($95 \% \mathrm{Cl} 2.3 \%-3.4 \%$) total difference in survival probability, about a quarter of this $(0.7 \%, 95 \% \mathrm{Cl} 0.5 \%-0.9 \%)$ is mediated by the dependence of treatment on stage and age at diagnosis.
- Recall that we expected this effect to be small, except when there are particular interactions present, as is the case here.
- Without relying on any cross-world assumptions nor any assumptions about the causal structure of the mediators, our results would suggest that, of the 2.8% ($95 \% \mathrm{Cl} 2.3 \%-3.4 \%$) total difference in survival probability, about a quarter of this $(0.7 \%, 95 \% \mathrm{Cl} 0.5 \%-0.9 \%)$ is mediated by the dependence of treatment on stage and age at diagnosis.
- Recall that we expected this effect to be small, except when there are particular interactions present, as is the case here.
- There is a negative association between age/stage and treatment: those who are older and/or diagnosed at an advanced stage are less likely to receive major surgery.
- Without relying on any cross-world assumptions nor any assumptions about the causal structure of the mediators, our results would suggest that, of the 2.8% ($95 \% \mathrm{Cl} 2.3 \%-3.4 \%$) total difference in survival probability, about a quarter of this $(0.7 \%, 95 \% \mathrm{Cl} 0.5 \%-0.9 \%)$ is mediated by the dependence of treatment on stage and age at diagnosis.
- Recall that we expected this effect to be small, except when there are particular interactions present, as is the case here.
- There is a negative association between age/stage and treatment: those who are older and/or diagnosed at an advanced stage are less likely to receive major surgery.
- One possible interpretation would be that doctors and/or patients decide that treatment is not likely to be beneficial for older patients and/or those with advanced disease, or that surgical treatment is substantially delayed for these patients due to tumor-reducing treatments such as chemotherapy being prioritised first.
- This negative association is less pronounced for women of higher SES.
- This negative association is less pronounced for women of higher SES.
- Therefore, we would interpret this estimated 0.7% as the increase in survival that would be expected if the treatment decision, as a function of stage and age at diagnosis (and baseline confounders), would be made for poorer women as it is currently made for higher SES women.
- This negative association is less pronounced for women of higher SES.
- Therefore, we would interpret this estimated 0.7% as the increase in survival that would be expected if the treatment decision, as a function of stage and age at diagnosis (and baseline confounders), would be made for poorer women as it is currently made for higher SES women.
- There is little evidence of further mediation through the treatment variable (estimated effect $0.02 \%, 95 \% \mathrm{Cl}:-0.05,0.08 \%$), and evidence of an effect through age and stage at diagnosis (estimated effect $0.7 \%, 95 \% \mathrm{CI} 0.5 \%-0.8 \%)$.
- This negative association is less pronounced for women of higher SES.
- Therefore, we would interpret this estimated 0.7% as the increase in survival that would be expected if the treatment decision, as a function of stage and age at diagnosis (and baseline confounders), would be made for poorer women as it is currently made for higher SES women.
- There is little evidence of further mediation through the treatment variable (estimated effect $0.02 \%, 95 \% \mathrm{Cl}:-0.05,0.08 \%$), and evidence of an effect through age and stage at diagnosis (estimated effect $0.7 \%, 95 \% \mathrm{Cl} 0.5 \%-0.8 \%)$.
- This would suggest that an additional 0.7% reduction in one-year mortality for lower SES women could be achieved if the distribution of age and stage at diagnosis (given year of diagnosis and region) were changed from that seen in lower SES women to that of higher SES women, a change that could perhaps be affected by encouraging better uptake of screening and other health-seeking behaviour among lower SES women.
- Mediation analysis, although intuitive and with a long history, is a surprisingly subtle business as soon as there are any non-linearities in the picture.
- Mediation analysis, although intuitive and with a long history, is a surprisingly subtle business as soon as there are any non-linearities in the picture.
- Advances thanks to the field of causal inference have greatly clarified these subtleties, giving rise to clear estimands that capture the notions of direct and indirect effects, clear assumptions under which these can be identified, and flexible estimation methods.
- Mediation analysis, although intuitive and with a long history, is a surprisingly subtle business as soon as there are any non-linearities in the picture.
- Advances thanks to the field of causal inference have greatly clarified these subtleties, giving rise to clear estimands that capture the notions of direct and indirect effects, clear assumptions under which these can be identified, and flexible estimation methods.
- However, this endeavour has been limited by the extremely strong and untestable cross-world assumption.
- Mediation analysis, although intuitive and with a long history, is a surprisingly subtle business as soon as there are any non-linearities in the picture.
- Advances thanks to the field of causal inference have greatly clarified these subtleties, giving rise to clear estimands that capture the notions of direct and indirect effects, clear assumptions under which these can be identified, and flexible estimation methods.
- However, this endeavour has been limited by the extremely strong and untestable cross-world assumption.
- This has effectively prohibited flexible multiple mediation analyses, even though applied problems frequently involve multiple mediators.
- Mediation analysis, although intuitive and with a long history, is a surprisingly subtle business as soon as there are any non-linearities in the picture.
- Advances thanks to the field of causal inference have greatly clarified these subtleties, giving rise to clear estimands that capture the notions of direct and indirect effects, clear assumptions under which these can be identified, and flexible estimation methods.
- However, this endeavour has been limited by the extremely strong and untestable cross-world assumption.
- This has effectively prohibited flexible multiple mediation analyses, even though applied problems frequently involve multiple mediators.
- Interventional effects are perhaps the way forward, since they don't require this cross-world assumption.
- We have shown how interventional effects can be used in multiple mediator settings.
- We have shown how interventional effects can be used in multiple mediator settings.
- A big advantage of our approach is that no assumption need be made regarding the causal structure of the mediators.
- We have shown how interventional effects can be used in multiple mediator settings.
- A big advantage of our approach is that no assumption need be made regarding the causal structure of the mediators.
- The price we must pay for this is that the decomposition includes a 'remainder' term which can be interpreted as a mediated dependence.
- We have shown how interventional effects can be used in multiple mediator settings.
- A big advantage of our approach is that no assumption need be made regarding the causal structure of the mediators.
- The price we must pay for this is that the decomposition includes a 'remainder' term which can be interpreted as a mediated dependence.
- We have seen that at least in some settings, this parameter has a real-world interpretation.
- We have shown how interventional effects can be used in multiple mediator settings.
- A big advantage of our approach is that no assumption need be made regarding the causal structure of the mediators.
- The price we must pay for this is that the decomposition includes a 'remainder' term which can be interpreted as a mediated dependence.
- We have seen that at least in some settings, this parameter has a real-world interpretation.
- Currently we are working on scaling this up to problems with (many) more than 2 mediators, including the incorporation of machine learning methods (via TMLE).

Outline

(1) Setting the scene Quick summary of yesterday Today's case study Mediation analysis with multiple mediators Sequential mediation analysis Interventional effects for multiple mediators
(2) Case study
(3) Q\&A
(4) References

VanderWeele, T.J. (2015)
Explanation in Causal Inference: Methods for Mediation and Interaction.
Oxford University Press.

目 Vanderweele, T.J., Vansteelandt, S. and Robins, J.M. (2014) Effect decomposition in the presence of an exposure-induced mediator-outcome confounder.
Epidemiology, 25:300-306.
围 Vansteelandt, S. and Daniel, R.M. (2017) Interventional effects for mediation analysis with multiple mediators.
Epidemiology, 28(2):258-265.
RanderWeele TJ, Tchetgen Tchetgen EJ Mediation analysis with time-varying exposures and mediators JRSS B, in press.

Avin C, Shpitser I, Pearl J Identifiability of path-specific effects.
Proceedings of the Nineteenth Joint Conference on Artificial Intelligence, pp 357-363, 2005.
(Albert JM, Nelson S
Generalized causal mediation analysis.
Biometrics, 67:1028-1038, 2011.
嗇 Daniel RM, De Stavola BL, Cousens SN, Vansteelandt S Causal mediation analysis with multiple mediators.
Biometrics, 71(1):1-14.

